
Integration of Karlsen
BlockDAG

In the following slides you will find the most important information 
needed in order to integrate Karlsen into your application.



How does the BlockDAG look like

• In the BlockDAG blocks can be 
created in parallel.

• Every block tries to merge other 
already known block-tips which don‘t 
have children yet.

• The numbers on the x-axis are the 
daa_scores.

• Daa_score = Total number of merged 
blocks from the point of view of 
blocks in this column.



Karlsend – The Karlsen Node
and the REST-API



Karlsend is the Karlsen Node

• Source Code:
• https://github.com/karlsen-network/karlsend

• Karlsen Node API:
• gRPC + Protocol buffers spec

• gRPC Documentation:
• https://github.com/Karlsen-

network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserve
r/protowire/README.md

• Protobuf specification:
• https://github.com/karlsen-

network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserve
r/protowire/messages.proto

• https://github.com/karlsen-
network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserve
r/protowire/rpc.proto

https://github.com/karlsen-network/karlsend
https://github.com/karlsen-network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserver/protowire/README.md
https://github.com/karlsen-network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserver/protowire/README.md
https://github.com/karlsen-network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserver/protowire/README.md
https://github.com/karlsen-network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserver/protowire/messages.proto
https://github.com/karlsen-network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserver/protowire/messages.proto
https://github.com/karlsen-network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserver/protowire/messages.proto
https://github.com/karlsen-network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserver/protowire/rpc.proto
https://github.com/karlsen-network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserver/protowire/rpc.proto
https://github.com/karlsen-network/karlsend/blob/master/infrastructure/network/netadapter/server/grpcserver/protowire/rpc.proto


Karlsen REST-API

For even simpler access to the Karlsen Node the Karlsen developers 
created a REST-API, which provides the most important commands.

• SWAGGER Docs: https://api.karlsencoin.com

• API-endpoint is free to use for everyone.

You can also create your own REST-API instance using the open source:
• https://github.com/karlsen-network/karlsen-rest-server

or the docker container
• https://hub.docker.com/r/karlsennetwork/karlsen-rest-server

https://api.karlsencoin.com/
https://github.com/karlsen-network/karlsen-rest-server
https://hub.docker.com/r/karlsennetwork/karlsen-rest-server


Use a Karlsen Wallet



Wallet application

• We suggest to use:
• Karlsenwallet: A wallet written in go, which is provided with the karlsend

node binary package. There are executables for Windows, Linux, macOS and 
Arm.

• When you create such a wallet application, it reads UTXOs from the node via 
GetUtxosByAddresses and submits signed transactions with 
SubmitTransaction.



Karlsenwallet 1/2

• The wallet application needs a connection to a Karlsen node. This is solved 
by a dedicated wallet daemon (acts as a client of karlsend and as a server 
for wallet commands).

• For the communication with the daemon you can use either the executable 
or another wallet-specific gRPC interface exposed by the wallet daemon.

• First you need to create a new wallet with the following instruction
• karlsenwallet create

• The wallet application needs a connection to a Karlsen node. This is solved 
with a wallet daemon client, which should be running.
• karlsenwallet start-daemon /s <karlsen node IP>:42110

• Note: You can use a local or a remote node



Karlsenwallet 2/2

• You can also use the wallet gRPC interface. The protocol buffers spec for this API can be 
found here:
• https://github.com/karlsen-

network/karlsend/blob/master/cmd/karlsenwallet/daemon/pb/kaspawalletd.proto

• When the daemon is running you can check the balance and send transactions:
• karlsenwallet balance

Total balance, KLS 2.55324509

• karlsenwallet send /t 
karlsen:qqe3p64wpjf5y27kxppxrgks298ge6lhu6ws7ndx4tswzj7c84qkjlrspcuxw /v 0.1

Transactions were sent successfully
Transaction ID(s):

845bb303acc717a4988de1e19b1cbbc80652490af9414893ecfd5dabdb00f45d

• Using gRPC the commands are: GetBalance(), Send()

• Note: For SendRequest the wallet-password is needed, so the use of a secured 
connection is recommended

• Hint: When sending requests, you can use useExistingChangeAddress to force the 
HDWallet sending the change value to a specified address

https://github.com/karlsen-network/karlsend/blob/master/cmd/karlsenwallet/daemon/pb/kaspawalletd.proto
https://github.com/karlsen-network/karlsend/blob/master/cmd/karlsenwallet/daemon/pb/kaspawalletd.proto


Creating an own wallet
If you want to use your own wallet implementation, you can use the Node’s gRPC API or the Karlsen REST-API 
for fetching UTXOs:

GetUtxosByAddressesRequestMessage
GetUtxosByAddressesRequestMessage requests all current UTXOs for the given karlsend addresses

This call is only available when this karlsend was started with --utxoindex

Field Type Label Description

addresses string repeated

And sending transactions

SubmitTransactionRequestMessage
SubmitTransactionRequestMessage submits a transaction to the mempool

Field Type Label Description

transaction RpcTransaction

allowOrphan bool

The default signing algorithm is Schnorr. You can also use ECDSA. See karlsenwallet signing algorithm

https://github.com/karlsen-network/karlsend/blob/master/cmd/karlsenwallet/daemon/server/sign.go


Check Transactions
When is a transaction confirmed?



How to index all blocks and transactions
1. Define a lowHash being either the last one indexed or pruningPointHash returned by calling GetBlockDagInfo

2. Call GetBlocks with the lowHash, including blocks and transactions

3. Cache/Save the blocks and their transactions. The mapping between a transaction and its block is important and should be 
recorded.

4. Go to 2 and use the last blocks hash as the new lowHash

Hint: With this procedure you won‘t miss any block and transactions.

GetBlocksRequestMessage
GetBlocksRequestMessage requests blocks between a certain block 
lowHash up to this karlsend’s current virtual.

Field Type Label Description

lowHash string

includeBlocks bool

includeTransactions bool

See the BlockProcessor.py for a battle-tested example.

https://github.com/karlsen-network/karlsen-db-filler/blob/main/BlocksProcessor.py


Simplify the BlockDAG with
VirtualSelectedParentChain (VSPC)
In the BlockDAG picture (see KGI) you see the thick black arrows.

These arrows are pointing at blocks, which are selected as a “chain_block”. 
In every daa_score there can be exactly one chain_block.

Important Rules

1. A single Transaction can appear in multiple blocks.

2. The chain block dictates which of the transactions in the merged blocks 
are accepted.

Reorg - Very important to know:

The virtual parent chain can have a so-called Reorg. That means, that 
blocks, which are chain blocks in the present, can loose this state and 
another block in the same daa_score can start being the chain_block
instead.

Consequence

It's possible that transactions, which were declared as accepted, are not 
accepted anymore. This happens only in the most recent blocks around 
the DAG tips.

https://kgi.karlsencoin.com/
https://kgi.karlsencoin.com/


An accepted transaction has one accepting block

For checking whether a transaction has been accepted, an additional variable is required in the cache/database 
per transaction. We call this variable acceptingBlockHash. It will be used on the next slide, but first a few 
words:

• The acceptingBlockHash describes which chain_block has accepted this transaction (note that accepted does 
not mean the tx is *included* in the block, acceptance is a *logical* concept)

• Since reorgs can occur in the VSPC, it is possible that the acceptingBlockHash changes.

• A transaction can only have one accepting block at a given moment.

What happens in a reorg?

When a reorg happens, a former chain_block looses its state and a new chain_block is added instead. (see 
previous slide)

The effect is, that all transactions which have acceptingBlockHash = former chain_block are not considered as 
accepted anymore. The new chain_blocks define the accepted transactions instead.

The acceptingBlockHash has to be updated in this step to the new chain_block.



Requesting VirtualSelectedParentChain (VSPC) 
via gRPC
On the next slide the following two gRPC commands will be used.

GetVirtualSelectedParentChainFromBlockRequestMessage

GetVirtualSelectedParentChainFromBlockRequestMessage 
requests the virtual selected parent chain from startHash to 
this karlsend’s current virtual.

Field Type Label Description

startHash string

includeAcceptedTransactionIds bool

Request: Response:

GetVirtualSelectedParentChainFromBlockResponseMessage

Field Type Label Description

removedChainBlockHashes string repeated
The chain blocks that were removed, in 
high-to-low order

addedChainBlockHashes string repeated
The chain blocks that were added, in low-
to-high order

acceptedTransactionIds AcceptedTransactionIds repeated

The transactions accepted by each block in 
addedChainBlockHashes. Will be filled only
if includeAcceptedTransactionIds = true in 
the request

error RPCError



How to check which transactions are accepted

1. Request the VSPC with GetVirtualSelectedParentChainFromBlock, beginning from a start block hash with set
includeAcceptedTxIds = True.

2. The response contains, beginning from start block, the following information:
addedChainBlockHashes: Which blocks are added to the VSPC
removedChainBlockHashes: Which blocks are removed from VSPC due to reorgs
acceptedTransactionIds: Which transactions got accepted by the VSPC

3. For each transaction which acceptingBlockHash is in removedChainBlockHashes, set
accepted = false

4. Go through AcceptedTransactionIds, and set in your cache/database for these transactions:
accepted = true
acceptingBlockHash = acceptingBlockHash from response
// note that each entry in the list has an acceptingBlockHash and a sub-list of tx ids

Requesting the VirtualSelectedParentChain might return more blocks than you know / have indexed.
If you haven’t indexed the acceptingBlockHash yet, then jump to 1) and use the last known acceptingBlockHash as the startHash
for the next call (this loop should operate with a timer every ~1 seconds)

Hint: It fequently may happen, that a transaction gets unaccepted by removedChainBlockHashes and immediately gets accepted with 
acceptedTransactionIds again.

See the VirtualChainProcessor.py for a battle-tested example.

Go through the VirtualSelectedParentChain (VSPC).
The VSPC contains the information about which transactions are accepted by which chain blocks.
This information is only saved in the VirtualSelectedParentChain.

https://github.com/karlsen-network/karlsen-db-filler/blob/main/VirtualChainProcessor.py


Confirmation of blocks and its transactions via 
BlueScore
For checking the confirmations, you need the BlueScore, which is the total sum of blue blocks in the BlockDAG

1. Get the current bluescore of the VSPC with GetVirtualSelectedParentBlueScoreRequest

2. Get the acceptingBlockHash’s blueScore for your TxId to be checked and substract if from the current bluescore.
 (currentVspcBluescore) – (acceptingBlockHash’s blueScore) = confirmations

In the following example we have 422 confirmations.

GetVirtualSelectedParentBlueScoreRequestMessage

GetVirtualSelectedParentBlueScoreRequestMessage 
requests the blue score of the current selected parent of 
the virtual block.

Field Type Label Description

blueScore uint64

error RPCError

gRPC Request and Response:

GetVirtualSelectedParentBlueScoreResponseMessage

https://explorer.karlsencoin.com/blocks/60f00009d1905a9288027be3e9ccd5ab9aec4e10b93837f0d57d2fdbb9d73f43


Examples written in Python

Mini example

This is a minimalistic example to show how to fetch blocks, TXs and checking, if TXs 
accepted. If you understand this already, you can proceed with the database filler example.

https://github.com/karlsen-network/karlsen-check-txs-example/blob/main/main.py

Database filler example

This is the code which is used to fill our database with all blocks, transactions and their 
accepted-state. Reading blocks/tx and checking the VSPC are running in parallel.

https://github.com/karlsen-network/karlsen-db-filler/blob/main/BlocksProcessor.py

https://github.com/karlsen-network/karlsen-db-filler/blob/main/VirtualChainProcessor.py

https://github.com/karlsen-network/karlsen-check-txs-example/blob/main/main.py
https://github.com/karlsen-network/karlsen-db-filler/blob/main/BlocksProcessor.py
https://github.com/karlsen-network/karlsen-db-filler/blob/main/VirtualChainProcessor.py

	Folie 1: Integration of Karlsen BlockDAG
	Folie 2: How does the BlockDAG look like
	Folie 3: Karlsend – The Karlsen Node
	Folie 4: Karlsend is the Karlsen Node
	Folie 5: Karlsen REST-API
	Folie 6: Use a Karlsen Wallet
	Folie 7: Wallet application
	Folie 8: Karlsenwallet 1/2
	Folie 9: Karlsenwallet 2/2
	Folie 10: Creating an own wallet
	Folie 11: Check Transactions
	Folie 12: How to index all blocks and transactions
	Folie 13: Simplify the BlockDAG with VirtualSelectedParentChain (VSPC)
	Folie 14: An accepted transaction has one accepting block
	Folie 15: Requesting VirtualSelectedParentChain (VSPC) via gRPC
	Folie 16: How to check which transactions are accepted
	Folie 17: Confirmation of blocks and its transactions via BlueScore
	Folie 18: Examples written in Python

